Maximal Abelian Normal Subgroups of Galois Pro-2-Groups
نویسندگان
چکیده
منابع مشابه
Triple factorization of non-abelian groups by two maximal subgroups
The triple factorization of a group $G$ has been studied recently showing that $G=ABA$ for some proper subgroups $A$ and $B$ of $G$, the definition of rank-two geometry and rank-two coset geometry which is closely related to the triple factorization was defined and calculated for abelian groups. In this paper we study two infinite classes of non-abelian finite groups $D_{2n}$ and $PSL(2,2^{n})$...
متن کاملOn non-normal non-abelian subgroups of finite groups
In this paper we prove that a finite group $G$ having at most three conjugacy classes of non-normal non-abelian proper subgroups is always solvable except for $Gcong{rm{A_5}}$, which extends Theorem 3.3 in [Some sufficient conditions on the number of non-abelian subgroups of a finite group to be solvable, Acta Math. Sinica (English Series) 27 (2011) 891--896.]. Moreover, we s...
متن کاملMaximal Compact Normal Subgroups and Pro-lie Groups
We are concerned with conditions under which a locally compact group G has a maximal compact normal subgroup K and whether or not G/K is a Lie group. If G has small compact normal subgroups K such that G/K is a Lie group, then G is pro-Lie. If in G there is a collection of closed normal subgroups {Ha} such that f~| Ha = e and G/Ha is a Lie group for each a, then G is a residual Lie group. We de...
متن کاملp-GROUPS WITH MAXIMAL ELEMENTARY ABELIAN SUBGROUPS OF RANK 2
Let p be an odd prime number and G a finite p-group. We prove that if the rank of G is greater than p, then G has no maximal elementary abelian subgroup of rank 2. It follows that if G has rank greater than p, then the poset E(G) of elementary abelian subgroups of G of rank at least 2 is connected and the torsion-free rank of the group of endotrivial kG-modules is one, for any field k of charac...
متن کاملMaximal abelian subgroups of free profinite groups
THEOREM. Let F be the free profinite group on a set X, where \X\ > 2, and let n be a non-empty set of primes. Then F has a maximal abelian subgroup isomorphic to HpEn Zp. The idea of the proof is the following: we show that A — Ylpe7I1p is a free factor of Pa, i.e. fia ^ A *B for some profinite group B. To conclude from this that A is a maximal abelian subgroup of Fa (the general case then foll...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 1994
ISSN: 0021-8693
DOI: 10.1006/jabr.1994.1164